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ABSTRACT

The real-world inventory control problems are normally iecigely defined and human
interventions are often required in solving these decisiaking problems. In this paper, a realistic
inventory problem with infinite rate of replenishment over espribed finite time horizon is developed
considering time dependent demand, which increases withaimd imprecise lead time. Shortages are
allowed and backlogged partially. The imprecise lead-timfgeie assumed to be represented by linear
membership function. The imprecise parameter is first toam&fd to corresponding interval numbers
and then following the interval mathematics, the objecfivection for average cost is changed to
respective multi objective functions. These functionsrair@mized and solved for a pareto optimum
solution by interactive fuzzy decision making procedure gigiriogic structure. The impreciseness of
lead-time and man-machine interaction lead to a multigécél decision process. This leads to man-
machine interaction for optimum and appropriate decisioemable to the decision maker’'s firm /
company. The model is illustrated numerically and the resméspresented in algorithmic and tabular

forms.

KEYWORDS: Fuzzy Lead-Time, Interval Number, Crisp Inventory Motieleractive Fuzzy

Decision Making Method, Pareto Optimal Solution.
INTRODUCTION

Since the development of EOQ model by Harris [1], loteskarch works have been carried out in
inventory control system. In the existing literatureseintory models are generally developed under the
assumption of constant or stochastic lead-time. A numibessearch papers have already been published
in this direction (cf.Das [2], and Foote et.al [3] etRecently, Kalpakam and Swapan [4] studied a
perishable inventory model with stochastic lead-time. Bukal life situations, the lead-time is normally
vague and imprecise i.e. uncertain in non-stochastic sengi. be more realistic to consider the lead-

time as fuzzy in nature.

Normally, duration of seasonal products is constant and #resavailable in the market every year

during a fixed interval of time. Hence the time periodtfar business of seasonal goods is finite. Several
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researchers (Hariaga and Benkharonf [5], Chakraborty dadidbari [6], Bhuina and Maiti [7] etc.)
have developed this type of inventory models also.

In multi-objective mathematical programming problems, aisien maker is required to
maximize/minimize two or more objectives simultaneouslyr avegiven set of possible situations. A
number of methods, assigning priorities to the objectivesngetspiration level for the objectives, etc.
exits for finding compromise solutions of multi-critedacision making problems. Recently, Roy and
Maiti [8] developed a multi-objective inventory model for deteating items  with stock dependent
demand under two restrictions in fuzzy environment. They soheg@ioblem with infinite time horizon
not considering shortages.

In inventory system, shortage may occur due to differanses, viz. delayed supply /production,
transportation problem, sudden increase of demand, attifidsis etc. Though shortages bring loss of

goodwill, still allowing shortage is one of the managerial denisior business.

In a fuzzy programming problem, the parameters are normeflged by fuzzy numbers. The fuzzy
numbers describe the imprecise coefficients of a fuzzy madtese imprecise coefficients may then
approximate to a crisp set of interval numbers. Grzegakief®] suggested a method to substitute a
fuzzy set by a crisp one. Chanas and Kutchta [10] defined gptmraation problem with fuzzy cost
coefficients and developed an algorithm to solve the problgtadieag the fuzzy parameters by crisp
interval numbers. In a fuzzy interactive linear / non-lim@alti-objective decision making problem, DM
plays an important role. He has every right to choice thaldai membership functions to achieve the
optimum goal. In this way, an interaction is establishedth wie DM. Sakawa [11,12] proposed a new

technique to solve such type of problems.

This paper develops an inventory problem with time dependemard® rate for a prescribed finite
time horizon allowing imprecise lead-time. The leadetiia represented by a fuzzy number. The fuzzy
number is expressed with the help of a linear membershigidanand then converted to appropriate
interval numbers following Grzegorzewski [9]. Here, shgetare allowed but the item is assumed to be
so costly that ther is a restriction on the shortageltevihere may be six models (model-1,2,3,4,5,6 )
depending upon the nature of first and last cycles. For eacH,nttoete will be different scenarios (total
6 scenarios) depending upon the time of placement of orddnfarext lot in the first cycle. Again, for
each scenario, there is a number of cases (totdN6L2[ 14N-1 models for the system) depending upon
the placement time for the next orders during succesisieecycles. For each problem using the concept
of interval arithmetic, we have constructed an equivalentlti-objective deterministic problem
corresponding to the original problem with interval éficeent. This equivalent problem has been solved
using interactive fuzzy decision making procedure and aligwnan-machine interaction to choose
different type of membership functions for the multi-oljed. Finally, some numerical examples are

used to illustrate the models how it work.
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FORMULATION OF THE MULTI-OBJECTIVE PROBLEM

We define a general non-linear objective function witkeficients of the decision variables as

interval valued numbers

k n
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where S is the feasible region of x;&Li [JaRi, O[JbLi [IbRi and ri, gj are positive numbers.

Now, we exihibit the formulation of the original proble(1) as a multi-objective non-linear
problem. Since the objective function Z(x) is an intervak natural that the solution set of (1) should be

defined by preference relations between intervals.

Now from equation (1) , following the interval arithne&t (cf. Moore [13], Inuiguchi and

Kume[14]) we have
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The right limit ZR(x) of the interval objective funoti Z(x) may be elicited as
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The center of the objective function ZC(x) can be writien
1 <
Ze(x) = 5 [Zr(x) + Zi(x)] &)

Thus the problem (1) is transformed into
Minimize { ZL , ZR, ZC} (6)

subject to the non-nagativity constraints of (1), where 4 and % are defined by the equations (3) ,
(4) and (5) respectively.

The Nearest Interval Approximation

Here we want to approximate a fuzzy number by a crispvisiteSuppose A anB are two

[ Ar(00).Ar(@) ] and [ Br(01).Br(cr) ]

fuzzy numbers withu-cuts i.e. respectively . Then the distance

between A anB s

f
|

o 1 - 1 ]
d(A.B) = \"‘ E.;(AL(ot)fBL(oc))z doo + [ (Ag() B () da
Given A is a fuzzy number, we have to find a closed iale6d (A) which is the nearest to A with
respect to metric d. We can do it since each intervak @ fuzzy number with constaatcut for all

a[0,1]. Hence (Cd(A)= [CL , CR].

Now we have to minimize

1 1
d(ﬁ.cd(;i)): ||‘ I(AL(G-’)—CL)Z da + I(AR(Q)—CR)Z do (7
0 0

with respect to Cr and Cr. . o
In omrder to minimize d(A, Cqa(A)), it is sufficient to minimize the function D(C,Cg) (= d° (A,
C4(A))). The first partial derivatives are
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Therefore the interval C, (A) = [ JA; (o) dot, JAR (o) do } (9)
0 0

1s the nearest interval approximation of fuzzy number A with respect to the metric d.
LetA= (a;,a,,a3) be a fuzzy number . The o-level interval of A is defined as (A), =[Ar(0),Ar(c)].
When A isa TFN, then Aj(o)=a,; +(a,-a,) and Ag(o)=as;+o(as-a,).

By the nearest interval approximation method the lower lifnibe interval is

1
Cr = J‘4L((!)d(1.
0
1

= J.[(71+0.’((12701)]d0f = %(aeral) (10)
0

And the upper limit of the interval is

1
Cg = J-AR(O{)(J’O.’ .
0

1
'I-[a37[[((737(72)]d([ = %((72‘1‘(73) (11)
0

Therefore the interval number considering A as a TFN IsHga)/ 2 , (a2+a3)/ 2].

Similarly, when A is a PFN then Ay (o) = ax-(az-a;) ¥V (1-0.) and Ag (o) = ax+(as-az) V (1-¢t).
Following the same way stated above, the interval number is [(2a;+a;)/ 3, (a,+2a3)/ 3].
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PROBLEM FORMULATION

The inventory model with imprecise lead-time and dyrademand is developed for the prescribed

finite time horizon under the following assumptions and itat

ASSUMPTIONS AND NOTATIONS

0] Rate of replenishment is infinite.

(i)  Shortages are allowed but backlogged partially.

(i)  The entire lot is delivered in one batch.

(iv) Inventory system involves only one item and one staghioint.

(v)  There is no quantity discount.

(vi) f(t)=at2+b.t+c,a,b,c>0, be the determinigtiadratic demand per unit time, which
increases with time.

(vii) C,=The inventory carrying cost per unit per unit time farteaycle.

(viii) C,= Shortage cost per unit per unit time for each cycle.

(ix) Csz = The replenishment (ordering) cost per order.

(x)  t,=Length of the time when new order is placed.

(xi) t, = Length of the time when inventory reaches zero. .

(xii) tz= Length of each cycle.

(xiii) H = Prescribed time horizon.

(xiv) N = Total number of replenishments to be made duhiegotescribed time horizon H.

(xv) L = Lead-time, which is a fuzzy number i.e=l( al, a2, a33[L1,L2],(0<L1<L2).

For j-th cycle (j=1,2,3,....,N+1) :

(xvi) Cj = purchasing cost per unit quantity and is dependieoi the lead time L such that Cj =
CP+CP'/L, CP>0.

(xvii) gj (t) = inventory level at time t.

(xviii) Qj = inventory level.

(xix) Sj = on hand inventory when the new order is placethi® next cycle.

(xx) Rj=shortage level.

o) Ti= (j- 1) 13,
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MATHEMATICAL MODELS

In an inventory situation, for a fixed prescribed timeizmr with number of cycles, a retailer or
manufacturer may have different options during startingcéwging of his/her business. At the beginning
of the cycle, one may start with (i) some replenishmemtgmement ( model-1,2,3 ) or (ii) allowing the
shortages for the items which are later partiallyklimgged ( model-4,5,6 ) . Similarly, towards the end
of the last cycle, one can wound up the business (i) eltpwhortages and later partially backlogged
only (model-1, 4) or (ii) allowing shortages but later do loatklogged them ( model-3,6 ) or (iii) with
the exhaust of the stock, not allowing further shortages €8). Here different inventory models
(model-1, 2,3,4,5,6) have been discussed combining the abeviorred situations. Let there be (N+1)

cycles during the fixed time horizon, H.
Model-1

In this model, the shortages are allowed at the endotf @gcle. The j-th cycle (for j=1,2,...,N+1)
starts with inventory Qj units at t=Tj and shortages allowed to be accumulated upto Rj units at
t=Tj+1. The procurement of (Qj+Rj-1) units first satisfine shortages at t=Tj and then the rest of the

procurement is kept in store to meet the demand dufingjtt2] , for j=2,3,...,N+1.

In the last cycle (i.e., in (N+1) th cycle), only the ghge units are replenished. Here, H= (N+1)

t3.
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Fig-1: Pictorial representation of Model-1 (one situatiof
Model-2

In this model, the shortages are allowed at the enddf eycle except the last one. The j-th cycle
(for j=1,2,...,N) starts with inventory Qj units at t=Tj&shortages are allowed to be accumulated upto
Rj units at t=Tj+1. The procurement of (Qj+Rj-1) unitsr(fe2,3,...,N+1) first satisfies the shortages at
t=Tj and then the rest of the procurement is kept in stoneeet the demand during [Tj, Tj+t2].

In the last cycle, shortages are not allowed. Hérd\t3+t2.
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Fig-2: Pictorial representation of Model-2 (one situatiof
Model-3

In this model, the shortages are allowed at the endabf @gcle. The j-th cycle (for j=1,2,...,N+1)
starts with inventory Qj units at t=Tj and shortages alewed to be accumulated upto Rj units at
t=Tj+1. The procurement of (Qj+Rj-1) units first satisfine shortages at t=Tj and then the rest of the
procurement is kept in store to meet the demand dufipgj+t2] , for j=2,3,...,N+1.

In the last cycle (i.e., in (N+1) th cycle), the ghge units are not backlogged. Here, H= (N+1) t3.

alt)

"“ﬁ\_\ Q
o] Qa 1
T, (T T T Tty Twa 4
T,=0 T-*tax"\lg, Toel, g Tutts s '
.oeLe Ak \\ '
i
L
'L

Fig-3: Pictorial representation of Model-3 (one situatiof
Four different scenarios may arise depending upon the repoite for the second cycle of above
three models:

Scenario-1: The order will be placed at T1 when on hand inventory bec@piése.,order will be

placed at the time of replenishment).
Scenario-11: The order will be placed at T1+ t1 (< T1+ t2 ) when on hand inveritecomes
S1(<Q1).

Scenario-lll: The order will be placed at T1+ t2 (= T1+ t1 ) when inventevel reaches zero.



U.K.Bera, J.K.Dey & M.Maiti 58

Scenario-1V: The order will be placed at T1+ t1 (> T1+ t2 ) after stgrtshortage and when
shortage level is S1(<R1).

In each scenario's, the order for the next cycle capldmed at the time of receiving the present
consignment or at a time between the receipt of theepteorder and occurrence of the shortages or at
the time when shortages begin or at a time during the gieopariod. Let, the above mentioned four
situations be denoted by A, B, C, D respectively. Henoe,ebch scenario of the above models,
combining all the possibilities of placing the order ttoe successive cycles, there will be 4N+1 cases for
model-1 and 4N cases for model-2 and 3. Here, for mo8lelAd model-2, the inventory control system
for only one case is presented since the other casebeaasily derived following the illustrated

methodology.

Case-l: In this case, the orders for every consecutive cyclelaeed at a time between the receipt
of the present order and occurrence of the shortages, aogcthe start with inventory.

Model-4

In this model, the shortages occur at the beginning andstioek is built up at each cycle after
backlogging the shortages except the last one. The j-th dgclg=(,2,...,N) starts with zero inventory
and shortages are allowed to be accumulated upto Rj uniéspiidturement of (Qj+Rj) units first
satisfies the shortages and then the rest of the proentésnkept in store to meet the demand during no

shortage period.

In the last cycle, only shortages units are replenidHere, H= N.t3+ L.
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Fig-4: Pictorial representation of Model-4 (one situatiof
Model-5

In this model, the shortages occur at the beginning andstioeR is built up at each cycle after
backlogging the shortages. The j-th cycle (for j=1,2,...,Nitstaith zero inventory and shortages are

allowed to be accumulated upto Rj units. The procurement efRjRjunits first satisfies the shortages
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and then the rest of the procurement is kept in stoneetet the demand during no shortage period. Here,

H= Nt3.
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Fig-5: Pictorial representation of Model-5 (one situation
Model-6

In this model, the shortages occur at the beginning andstioek is built up at each cycle after
backlogging the shortages except the last one. The j-th cyelg=(f,2,...,N) starts with zero inventory
and shortages are allowed to be accumulated upto Rj uniéspiidturement of (Qj+Rj) units first
satisfies the shortages and then the rest of the proentesnkept in store to meet the demand during no

shortage period.

In the last cycle, the shortages units are not backtbdéere, H= N.t3+ L.
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Fig-6: Pictorial representation of Model-6 (one situation)

Two different scenarios may arise depending upon the reqooderfor the first cycle of the above

three models:
Scenario-1: The order will be placed at T1(=0).

Scenario-1I: The order will be placed at T1+ t1 (t1< t2) during shortageogexrnd when shortage

level is S1.
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Depending upon the placing of order for the next cycleeash scenarios, there will be four
situations A, B, C, D (which are mentioned earlier) alscucz Hence, for each scenario of the above
models, combining all the possibilities of placing theeoréor the successive cycles, there will be

2 x4N* cases for each model-4,6 and 2x4N cases for model-4.

Here, for model-4,5 and model-6, the inventory controlesydfior only one case is presented since

the other cases can be easily derived following thetiitesd methodology.

Case-ll: In this case, the order for the first consignment is platdte beginning of the system which

starts with shortages and the orders for other conseaugtles are placed during the shortage period.
Formulation of case-I ( for model-1)

In this scenario, the inventory level q j(t) at timéT} <t <Tj1 , j=1,2,3,....,N+1.) satisfies the
following differential equations:

da () [-£(). T, stsT+t,
dt —Of(T; +1t)), T +t,<ts<T,

jt1

(12)

with the boundary conditions

q;() =Q;. t=T;
=0, t=T+t, (13)
=-R;, t=T,,

and qj(T):SJ- at t=T;+t,

The solutions of the differential equations (12) with the hel{d 6f are

SR

{(Tj+t,)3—t3}+%{(Tj+t2)2—t2}+
q,(0) = c{(Tsz)ft}, T <t<T+t, (14)
cb(Tszft)f(Tsz)._ Tj+t2£t£1"j+

‘.

1

Using the condition (16) and (17), we get from (18)

as b, )
—t. +—t +ct 15)
32 22 2’} (

and R =35 (t;—t,) £ (Tj+1,) (16)

r \ (

Qj.:m‘sz2 +Lnf§+br2 JTJ+L

The total inventory carrying cost of the system is gilg
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T.+t>

Cy= € [ q (0 dt

a [ \
4% 737 272 )] (17)

The total shortage cost of the system is given by

Tin
Cg=-C, [ aq(®adt
TJ+r2
1. >
:50 Cy, f(Tj+1,) (15 -1)° (18)

Total cost over the time horizon is given by

N+l N+1 ( C'\ N+l [ C'\ N+l N+l
F(ti 1) = > Cy + 2 Cgi + [( t >Q;+ Lc.+ 7 DR+ DGy
=1 =1 VA /o=l =1
= [F . K] (19)
(For formulation ofF_, Fr, seeApendix-1)
Using the equation (6), our problem given by (19) may beittew as
Minimize {FL , Fr, FC}
where F. = %(FL + Fg). (20)

Obviously 0< 8;20; forj=1.2,... . N+1.

Interactive Approach For Solution:

Above interval problem is now reduced to a multi objectiga-linear programming problem as
Minimize{ FL (N, tg), FR (N,t;)._ FC (N._Tg) } (21)
Now interactive approaches be used by considering the impreatigee of the DM's judgement, which

is natural to assume that the DM may have fuzzy or ioipeegoals for each of the objective functions

To derive the membership functions Wy Mg .U each of the objective function Fr.Fr.Fc from
DM's view point we first calculate individual minimum ( ie. F™, F2™, F2 ) and individual

max

maximum ( ie. F™ ™ F2™) by a non-linear optimization technique.

With the help of individual minimum and maximum, the DM celect his membership functions from

among two types of membership functions i.e. from
(i) linear membership function

(ii) quadratic membership function
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The membership functions THT and . for each of the objective functions Fr, Fr and Fc

L R C
1 if F_<F!
7 be written as 5F (22)
may ‘ =1 d_if FL <F_<F°
FK K K K K

0 if F_=F°

K K
where F; and Fy are to be chosen such that FP*® <Fj < Fg <F and d is a strictly
monotonic decreasing continuos function of Fxwhich may be linear or non-linear.

LINEAR MEMBERSHIP FUNCTION (TYPE-I)

For each objective function, the corresponding linear merhipefisnctions are as follows:

1 if F_<F!
K K
1
F_-F 23
1- K K Fl cF <F? (23)
P K K K
K
. 0
0 if F 2F}

UP .

K

where F; and F are to be chosen such that Fi™ <F; <F; <Ff™and P, =Fg —F; is the
tolerance of k-th objective function F, .

;

=

F

1] 1 0 E
R K

Fig. 7 Pictorial representation of IinearpFK

QUADRATIC MEMBERSHIP FUNCTION (TYPE-II)

For each of the objective functions the correspondindratia membership function s are

1 if F_<F!
K K
2
_E ) (24)
E F,
_ K 'K PP 0
uFK_ 1- > } if F, <F_<F/
0 if F_>F°
K K
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where F; and F; are to be chosen such that F™ <F; <F; <Ffand P, =F7 — F; is the

tolerance of k-th objective function F .

T}

Fg

|
I
1
I
I
!
L

0 1
Fe Py

Fig. 8 Pictorial representation of quadratichK

FUZzY DECISION MAKING METHOD

After determining the different linear / non-linear membegrdhinctions for each of the objective
functions, Bellman and Zedah [15] and following Zimmermah@] [the given problem (19) can be

formulated as

Max A

) 25
subject to A <HUf, . A SUp, A<up (25)
: c

04 <1

With the help of two different type of membership fuons given by (23) and (24), above problem can

be restated for a particular choice of DM as

Max A
FL-Fy
subject to A < 1— if first objective € Tyvpe —1I.
P
I

[FR - Fp ] (26)

A<1- , if second objective € Tvpe —II.
P
R
FC‘ —Fé
A< 1-——= if third objective € Type — 1.
P,
C
0<A <1.

Here DM selects the above membership functions focaheesponding objective functions. Then the
above problem can be solved by non-linear optimization techaigdi®@ptimal solution of\, says\* is

obtained.
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Now the DM selects his most important objective fumtdifrom among the objective functions FL

FR and FC . Here FR is selected as DM would like tomie his / her worst case. Then the problem
becomes ( foh= A*)

Min F,
(27)
subject to Fr Smy, FrS<mp, Fo<mg,
0<A <1
1 S . L
where mp=F, +P(1-4). if the first objective € Type — 1.

My = F; + Py \.‘I 1-4" . if thesecond objective € Tvpe — II.

me = Fg +P.(1 —i*). if the fthird objective € Type — I.

PARETO OPTIMAL SOLUTION

Here pareto optimality test is performed according to Sakawa [13]. Let the decision vector r1

t;and the optimum values, F, =F, (1;.7,), Fq =Fy(1,.t,) and F. =F, (r,.1,) are obtained from
(27). Then solve the problem:

Minimize V.= (F, +F, +F.) 28)
subject to  F, <F, . Fr <F, . Fo <F,. |
0<4 <1
Using a non-linear optimization technique, the optimal

solution of (28), say,

otherwise it is weak Pareto optimal solution.

Numerical Example

To illustrate the proposed inventory models, following input data are considered.
Input Data: C;=04, C,=6.25, C3=420, 5=0.93, a=0.25, b=1, c=100, Cp=15, C'=0.15,
Hi=12, H,=14, a;=0.45, a,=0.65, a;=0.85 in proper unifts.

WHEN FUZZY PARAMETER Is TFN

Considering the above fuzzy parameler as triangular fuzzy number (TFN), the nearest interval
approximations according to Grzegorzewski [d]4s= [ .55, .75 ].

Following (23) and (25), the problem (21) is solved and the eeardtpresented in the following tables:
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Table-1.Individual Minimum and Maximum of Objective Functions

Objective ' Minimum ) Maximum
functions Model-I Model -2 Model -3 Model -1 Model -2 Model -3
Fo 24941.63 25346.60 24191.51 24973.73 25459.94 24292.55
Fr 29054.57 29642.79 28401.09 29087.24 29758.58 28504.16
Fe 27006.20 27523.34 26321.81 27014.44 27552.59 26347.83
Table-2

(Input Data for T . Fg)

Modd T g PE N H ! E
Model-I 24941.63 24970.73 29054.57 29080.24 27006.20 27014.00
Model-2 25346.60 25440.94 29642.79 29750.58 27523.34 27550.59

Model-3 2419151 24280.55 28401.09 28500.16 26321.81 26347.00

Solution with Fuzzy Decision Making Method

DO YOU WANT LIST OF MEMEBERSHIP FUNCTIONS ?

=YES

LIST OF MEMBERSHIP FUNCTIONS

(1) LINEAR

(2) QUADRATIC

INPUT MEMBERSHIP FUNCTION TYPE FOR FIRST OBJECTIVE:
=1

INPUT MEMBERSHIP FUNCTION TYPE FOR SECOND OBJECTIVE
=2

INPUT MEMBERSHIP FUNCTION TYPE FOR THIRD OBJECTIVE:
=1

Let, at the beginning, analysis is performed to find optimusith the membership function

FL , FC as linear (Type-1) and FR as Quadratic (TWpeFhe optimum value oflis presented in
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Table: 3A- MAXIMUM CALCULATION (following (26))

Maximum A

Model-T

Model-2

Model-3

e

0.8101376

0.8278420

0.8378888

With this value of A* following(27). the objective function F; is optimized and the optimum

results are:

Table-4
(optimal results when choosing most important objective function as Fy )

Model | N § ; [ 7.7 ] 2
Model-I 9 0.65 0.9770460 [ 24947.15,29065.76 ] | 27006.46
Model-2 10 0.5579924 0.9200764 [ 25362.84 ,29687.51 ] | 27525.18
Model-3 9 0.65 0.7248860 [ 24205.95 , 2844097 ] | 2632346

Now, the results obtained from table-4 are tested fort®apgimality and the following (28) Pareto

optimal results are given in Table-5.

Table-5
(pareto optimal results)

Model v N E ,_ [ E g] g
Model-I | 0.00258 | 9 0.65 0.9770380 | [24947.15,29065.76] | 27006.46
Model-2 | 0.00488 | 10 | 0.5579928 | 0.9200758 [ 25362.84,29687.51] | 27525.17
Model-3 | 0.00299 | 9 0.65 0.7248917 | [24205.95 2844097 ] | 26323.46

ARE YOU SATISFIED WITH THE CURRENT PARETO OPTIMALI SOLUTION ( OTHER WISE
RECHOICE THE

MEMBERSHIP FUNCTIONS ) ?
= YES STISFIED

In Table-5, the values of V are quite small and hence, ttimam result in Table-4 are strong Pareto
optimum and can be accepted. Still. If the decision-makeadtitioner is not satisfied with the outputs,
he / she may perform the above analysis again re-cho®ngembership functions or FL , FC and FR ,
as linear, quadratic and exponential (say). If this seconel éinalysis does not also give the desired
result, the DM may perform the analysis with the otressible different combinations ( in this case, 33
times) of the membership functions and can select & suitable optimum solution for his / her firm

for implementation.”
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Result when a =0 ie fit/=bt+c:

WHEN FUZZY PARAMETER is TFN anda=0:

To illustrate the proposed inventory models, following input data are considered.

Input Data: C;=0.4, Cx=6.25, C:=420, 8=0.93, b=1, ¢=100, Cp=15, C'=0.15, H;=12, H,=14,
a;=0.45, a,=0.65, a;=0.85 in proper units.

WHEN FUZZY PARAMETER is TFN :

Considering the above fuzzy parameter L as triangular fuzzy number (TFN), the nearest interval
approximations according to Grzegorzewski [9]is L =[.55. .75 ].

Following (23) and (25), the problem (21) is solved and the results are presented in the following
tables:

Table-6. Individual Minimum and Maximum of Objective Functions

Objective Minimum Maximum
functions Model-T Model -2 Model -3 Model -1 Model -2 Model -3
Fo 23631.27 24034.50 23037.49 23744.09 24147.36 23147.89
Fr 27156.41 27552.01 26529.56 27270.01 27665.75 26640.71
Fe 2542214 25821.58 24811.22 25450.64 25850.13 24839.10
Table-7
(Input Data of E, , F)

— H K B B H R
Model-T 23631.27 23740.09 27156.41 27270.00 2542214 25450.00
Model-2 24034.50 24140.36 27552.01 27660.75 25821.58 25850.00
Model-3 23037.49 23145.89 26529.56 26640.00 24811.22 24838.00

Let, with the above values, the membership functions of the objective functions may be formed of
the tvne as ver the Table-9.

Table-8
Objective functions Type of membership functions
F, Type-I or Type-II
Fy Type-I or Type-II
F. Type-I or Type-II

Let, at the begmming, analysis 1s performed to tind optimum A with the membership function

F, .F. as linear (Type-I) and F as Quadratic (Type-II). The optimum value of A is presented in
Table-9.
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A- MAXIMUM CALCULATION:

Table-9
(Optimal value of 4)
Maximum A Model-I Model-2 Model-3
A 0.8511807 0.8426335 0.8517809

With this value of A*, the objective function F, is optimized and the optimum results are:

Table-100ptimal Results

Model N * * [ F;=E; ] Fi

h t c

Model-I 9 0.65 1.0165930 [23647.46,27200.23 ] | 25423.85
Model-2 10 0.5569648 0.9303536 [24051.16,27595.157 | 25823.15

Model-3 9 0.65 0.7722806 [ 23053.56,26572.08 ] | 24812.82

Now, the results obtained from table-10 are tested &oetB-optimality and the Pareto optimal results

are given in Table-11.

Table-11. Pareto Optimal Results

Model Vv N { Z [ E g] g
Model-I | 0.00258 | 9 0.65 1.0165880 | [23647.46,27200.23] | 25423.85
Model-2 | 0.00488 | 10 | 0.5569666 | 0.9303436 | [24051.16,27595.15] | 25823.15
Model-3 | 0.00299 | 9 0.65 0.7722778 | [23053.56,26572.08] | 24812.82

Here again, the values of V are very small and héheeoptimal values in Table-10 are strong
Pareto-optimum and can be accepted if DM is satisfiedMfi®not satisfied, he / she may perform the

analysis with different combinations of membership functions.

CONCLUSIONS

The present paper proposes a solution procedure for inventatgl with time dependent demand
rate where demand increases with time and imprecisetitead Here, shortages are allowed and
backlogged partially. The fuzzy parameter is describelihkegr / non-linear type membership functions.
Fuzzy numbers are then approximated to an interval numbkecethe problem has been converted into
a multi-objective inventory problem where the objective functiares represented by left limit, right
limit and center of interval function which are to be minirdiz&o obtain the solution of the
deterministic multi-objective inventory problem, the intenaefuzzy solution procedure has been used.
The advantage of this procedure is that the decision-makerasdly minimize his worst case. Different
scenarios have been considered depending upon the timecoigpthe order for the next lot. The
formulation of the model and the solution procedure presentedaherguite general. Here, the results

have been presented with imprecise lead-time represent€damgular Fuzzy Number only. Similarly,
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the results can be derived for Parabolic Fuzzy Number dr&t nbn-linear fuzzy numbers. Though the

problem has been presented in crisp and fuzzy environmeat ke also formulated in fuzzy-stochastic

environments.
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APPENDICES
NH . 7
ZTJ- =T +T5 +T5 +oeee + T
1 |
= 13 (12+23+32 T +N2)

:% {NWV+D) 2N+ }
- % {NWV+1) @N+D H(n+L )

=%{A-'(N+1)(2N+1) g + .Y

:%{N(NH) QN+ Ha+L , 4+L | [4+L 4+, ]
= % {NWV+1) N+ | [(rl+L1)2. (r1+L2)2]
=[ E; k> ]

where E; = % [INN+1D) @N+D) J(4+L,)?

and E, = (15 [NN+1) N+ L(+L,)*
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N+1

ZTJ =T +T+Ts+. o+ Ty
j=L

=13 (1 +2+34+... +\)
=%{N(N+1)}

= IV e M)
:%{“’V(NH)}- {n+ (6.1}

= % {NWN+D) Ha+L .+
=[G, .Gy ]
where G; = % {NWNV+D) L +L)

and G, = % INN+D) e +L,)
N+1 N+1 7 N N+1 ’ N
a 2 b 4 b -
YCy = G =t YT +LTa‘23+_‘z2 | ST + [ S0+ 267+ t,7 |
j=1 2 = 3 2 4 3

. 4 At 4
= {thz [El,Ez] +L2; t23+ gtzz ! [GI,G.}] + L3124+ ét}3+

b J
=[Mi,M:]
where
; N ; N
2 3 2 %) 4 3 )|
and
where

1. 2 o s 2
X, Eo C,(t; —t;) {a. Ey +(2at,+b) Gy + (N +1)(at; +bt,+c) }

and

1 ) i )
X, = 55 Cy(t; —t3)” { a.Ey +(2at,+b) Gy + (N+1)(at;+bt,+c) }

N+1 N+ N+l R l

Y Rj =06 (t;—-ty)q a ZTJ“+(2at2+b) ZTJ +(N+1)(at;+bt2+c)J
j=1 j=1 -

= 5 (-t ] a [E.E]+(2ar,+8) [6,.G,]+ (W4 1)(ar +br +e) |

[Ki, K]

j=1
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where
K =0 (t;—-t ){a. E +(2ar +b) G +(N+1)((rff+bfj+c)}

and
K =3 (rrtz){a.Ez +(2m‘ +b) G, +(N+1)(af2+br +c)}
N+1 N+1 N+1 C. ') N+ N+
F(tt) = > Cyi+ 2.Cg + | C +TP ZQJ C +% DR+ Y Cy
i=1 j=1 B =1
CPI Cpl
:[B'Il,r\fiz]_[Hl.Hj]_ C +— [G] G]+ .p+ C +—
2 L L, L

[Ki, K2]+ (N+1) Cs

|\ /. j'\
— [F.,Fa] where F,.=M,+H+ L EJGl— LmEJKI— (N+1) C;

2 2
(-,,\ s (—”\
and FR: 1\,{24— H_w LC_}—L_JCF LC‘-{_L_JK:_F(N_I) Cz
1 1



